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Abstract. Automatic segmentation of mammographic mass is an
important yet challenging task. Despite the great success of shape prior
in biomedical image analysis, existing shape modeling methods are not
suitable for mass segmentation. The reason is that masses have no spe-
cific biological structure and exhibit complex variation in shape, margin,
and size. In addition, it is difficult to preserve the local details of mass
boundaries, as masses may have spiculated and obscure boundaries. To
solve these problems, we propose to learn online shape and appearance
priors via image retrieval. In particular, given a query image, its visu-
ally similar training masses are first retrieved via Hough voting of local
features. Then, query specific shape and appearance priors are calcu-
lated from these training masses on the fly. Finally, the query mass is
segmented using these priors and graph cuts. The proposed approach is
extensively validated on a large dataset constructed on DDSM. Results
demonstrate that our online learned priors lead to substantial improve-
ment in mass segmentation accuracy, compared with previous systems.

1 Introduction

For years, mammography has played a key role in the diagnosis of breast cancer,
which is the second leading cause of cancer-related death among women. The
major indicators of breast cancer are mass and microcalcification. Mass seg-
mentation is important to many clinical applications. For example, it is critical
to diagnosis of mass, since morphological and spiculation characteristics derived
from segmentation result are strongly correlated to mass pathology [2]. However,
mass segmentation is very challenging, since masses vary substantially in shape,
margin, and size, and they often have obscure boundaries [7].

During the past two decades, many approaches have been proposed to facil-
itate mass segmentation [7]. Nevertheless, few of them adopt shape and appear-
ance priors, which provide promising directions for many other biomedical image
segmentation problems [12,13], such as segmentation of human lung, liver,
prostate, and hippocampus. In mass segmentation, the absence of the study
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Fig. 1. Overview of our approach. The blue lines around training masses denote
radiologist-labeled boundaries, and the red line on the rightmost image denotes our
segmentation result.

of shape and appearance priors is mainly due to two reasons. First, unlike the
aforementioned organs/objects, mammographic masses have no specific biologi-
cal structure, and they present large variation in shape, margin, and size. Nat-
urally, it is very hard to construct shape or appearance models for mass [7].
Second, masses are often indistinguishable from surrounding tissues and may
have greatly spiculated margins. Therefore, it is difficult to preserve the local
details of mass boundaries.

To solve the above problems, we propose to incorporate image retrieval into
mammographic mass segmentation, and learn “customized” shape and appear-
ance priors for each query mass. The overview of our approach is shown in Fig. 1.
Specifically, during the offline process, a large number of diagnosed masses form
a training set. SIFT features [6] are extracted from these masses and stored
in an inverted index for fast retrieval [11]. During the online process, given a
query mass, it is first matched with all the training mass through Hough vot-
ing of SIFT features [10] to find the most similar ones. A similarity score is
also calculated to measure the overall similarity between the query mass and its
retrieved training masses. Then, shape and appearance priors are learned from
the retrieved masses on the fly, which characterize the global shape and local
appearance information of these masses. Finally, the two priors are integrated
in a segmentation energy function, and their weights are automatically adjusted
using the aforesaid similarity score. The query mass is segmented by solving the
energy function via graph cuts [1].

In mass segmentation, our approach has several advantages over existing
online shape prior modeling methods, such as atlas-based methods [12] and
sparse shape composition (SSC) [13]. First, these methods are generally designed
for organs/objects with anatomical structures and relatively simple shapes.
When dealing with mass segmentation, some assumptions of those methods,
such as correspondence between organ landmarks, will be violated and thus the
results will become unreliable. On the contrary, our approach adopts a retrieval
method dedicated to handle objects with complex shape variations. Therefore, it
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could get effective shape priors for masses. Second, since the retrieved training
masses are similar to the query mass in terms of not only global shape but also
local appearance, our approach incorporates a novel appearance prior, which
complements shape prior and preserves the local details of mass boundaries.
Finally, the priors’ weights in our segmentation energy function are automat-
ically adjusted using the similarity between the query mass and its retrieved
training masses, which makes our approach even more adaptive.

2 Methodology

In this section, we first introduce our mass retrieval process, and then describe how
to learn shape and appearance priors from the retrieval result, followed by our mass
segmentation method. The framework of our approach is illustrated in Fig. 1.

Mass Retrieval Based on Hough Voting: Our approach characterizes mam-
mographic images with densely sampled SIFT features [6], which demonstrate
excellent performance in mass retrieval and analysis [4]. To accelerate the
retrieval process, all the SIFT features are quantized using bag-of-words (BoW)
method [4,11], and the quantized SIFT features extracted from training set are
stored in an inverted index [4]. The training set D comprises a series of samples,
each of which contains a diagnosed mass located at the center. A training mass
d ∈ D is represented as d =

{(
vd
j ,p

d
j

)}n

j=1
, where n is the number of features

extracted form d, vd
j denotes the j-th quantized feature (visual word ID), and

pd
j =

[
xd
j , y

d
j

]T denotes the relative position of vd
j from the center of d (the

coordinate origin is at mass center). The query set Q includes a series of query
masses. Note that query masses are not necessarily located at image centers.
A query mass q ∈ Q is represented as q = {(vq

i ,p
q
i )}mi=1, where pq

i = [xq
i , y

q
i ]

T

denotes the absolute position of vq
i (the origin is at the upper left corner of the

image since the position of the mass center is unknown).
Given a query mass q, it is matched with all the training masses. In order to find

similar training masses with different orientations or sizes, all the training masses
are virtually transformed using 8 rotation degrees (from 0 to 7π/4) and 8 scaling
factors (from 1/2 to 2). To this end, we only need to re-calculate the positions of
SIFT features, since SIFT is invariant to rotation and scale change [6].

For the given query mass q and any (transformed) training mass d, we cal-
culate a similarity map Sq,d, a similarity score sq,d, and the position of the
query mass center cq,d. Sq,d is a matrix of the same size of q, and its element
at position p, denoted as Sq,d (p), indicates the similarity between the region
of q centered at p and d. The matching process is based on generalized Hough
voting of SIFT features [10], which is illustrated in Fig. 2. The basic idea is that
the features should be quantized to the same visual words and be spatially con-
sistent (i.e., have similar positions relative to mass centers) if q matches d. In
particular, given a pair of matched features vq

i = vd
j = v, the absolute position

of the query mass center, denoted as cqi , is first computed based on pq
i and pd

j .
Then vq

i updates the similarity map Sq,d. To resist gentle nonrigid deformation,
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Fig. 2. Illustration of our mass matching algorithm. The blue lines denote the mass
boundaries labeled by radiologists. The dots indicate the positions of the matched SIFT
features, which are spatially consistent. The arrows denote the relative positions of the
training features to the center of the training mass. The center of the query mass is
localized by finding the maximum element in Sq,d.

vq
i votes in favor of not only cqi but also the neighbors of cqi . c

q
i earns a full vote,

and each neighbor gains a vote weighed by a Gaussian factor:

Sq,d (cqi + δp) + =
idf2 (v)

tf (v, q) tf (v, d)
exp

(

−‖δp‖2
2σ2

)

, (1)

where δp represents the displacement from cqi to its neighbor, σ determines the
order of ‖δp‖, tf (v, q) and tf (v, d) are the term frequencies (TFs) of v in q and
d respectively, and idf (v) is the inverse document frequency (IDF) of v. TF-IDF
reflects the importance of a visual word to an image in a collection of images,
and is widely adopted in BoW-based image retrieval methods [4,10,11]. The
cumulative votes of all the feature pairs generate the similarity map Sq,d. The
largest element in Sq,d is defined as the similarity score sq,d, and the position of
the largest element is defined as the query mass center cq,d.

After computing the similarity scores between q and all the (transformed)
training masses, the top k most similar training masses along with their diagnostic
reports are returned to radiologists. These masses are referred to as the retrieval
set of q, which is denoted as Nq. The average similarity score of these k training
masses is denoted as ω = (1/k)

∑
d∈Nq

sq,d. During the segmentation of q, ω mea-
sures the confidence of our shape and appearance priors learned from Nq.

Note that our retrieval method could find training masses which are similar in
local appearance and global shape to the query mass. A match between a query
feature and a training feature assures that the two local patches, from where
the SIFT features are extracted, have similar appearances. Besides, the spatial
consistency constraint guarantees that two matched masses have similar shapes
and sizes. Consequently, the retrieved training masses could guide segmentation
of the query mass. Moreover, due to the adoption of BoW technique and inverted
index, our retrieval method is computationally efficient.

Learning Online Shape and Appearance Priors: Given a query mass q, our
segmentation method aims to find a foreground mask Lq. Lq is a binary matrix
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of the size of q, and its element Lq (p) ∈ {0, 1} indicates the label of the pixel
at position p, where 0 and 1 represent background and mass respectively. Each
retrieved training mass d ∈ Nq has a foreground mask Ld. To align d with q, we
simply copy Ld to a new mask of the same size of Lq and move the center of Ld

to the query mass center cq,d. Ld will hereafter denote the aligned foreground
mask.

Utilizing the foreground masks of the retrieved training masses in Nq, we
could learn shape and appearance priors for q on the fly. Shape prior models
the spatial distribution of the pixels in q belonging to a mass. Our approach
estimates this prior by averaging the foreground masks of the retrieved masses:

pS (Lq (p) = 1) = 1
k

∑

d∈Nq

Ld (p),

pS (Lq (p) = 0) = 1 − pS (Lq (p) = 1) .
(2)

Appearance prior models how likely a small patch in q belongs to a mass. In
our approach, a patch is a small region from where a SIFT feature is extracted,
and it is characterized by its visual word (quantized SIFT feature). The proba-
bility of word v belonging to a mass is estimated on Nq:

pA (Lq (pv) = 1) = nf
v

nv
,

pA (Lq (pv) = 0) = 1 − pA (Lq (pv) = 1) ,
(3)

where pv is the position of word v, nv is the total number of times that v appears
in Nq, nf

v is the number of times that v appears in foreground masses.
It is noteworthy that our shape and appearance priors are complementary.

In particular, shape prior tends to recognize mass centers, since the average fore-
ground mask of the retrieved training masses generally has large scores around
mass centers. Appearance prior, on the other hand, tends to recognize mass
edges, as SIFT features extracted from mass edges are very discriminative [4].
Examples of shape and appearance priors are provided in Fig. 1.

Mass Segmentation via Graph Cuts with Priors: Our segmentation
method computes the foreground mask Lq by minimizing the following energy
function:

E (Lq) = λ1EI (Lq) + λ2 ωES (Lq) + λ3 ωEA (Lq) + ER (Lq)
= −λ1

∑

p
ln pI (Iq (p)|Lq (p)) − λ2 ω

∑

p
ln pS (Lq (p))

−λ3 ω
∑

p
ln pA (Lq (p)) +

∑

p,p′
β (Lq (p) ,Lq (p′)),

(4)

where Iq denotes the intensity matrix of q, Iq (p) represents the value of the
pixel at position p. EI (Lq), ES (Lq), EA (Lq) and ER (Lq) are the energy terms
related to intensity information, shape prior, appearance prior, and regularity
constraint, respectively. β (Lq (p) ,Lq (p′)) is a penalty term for adjacent pixels
with different labels. λ1, λ2 and λ3 are the weights for the first three energy
terms, and the last term has an implicit weight 1.
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In particular, the intensity energy EI (Lq) evaluates how well Lq explains
Iq. It is derived from the total likelihood of the observed intensities given cer-
tain labels. Following conventions in radiological image segmentation [5,12],
the foreground likelihood pI (Iq (p)|Lq (p) = 1) and background likelihood
pI (Iq (p)|Lq (p) = 0) are approximated by Gaussian density function and
Parzen window estimator respectively, and are both learned on the entire train-
ing set D. The shape energy ES (Lq) and appearance energy EA (Lq) measure
how well Lq fits the shape and appearance priors. The regularity energy ER (Lq)
is employed to promote smooth segmentation. It calculates a penalty score for
every pair of neighboring pixels (p,p′). Following [1,12], we compute this score
using:

β (Lq (p) ,Lq (p′)) =
1 (Lq (p) �= Lq (p′))

2 ‖p − p′‖ exp

(

− (Iq (p) − Iq (p′))2

2ζ2

)

, (5)

where 1 is the indicator function, and ζ determines the order of intensity dif-
ference. The above function assigns a positive score to (p,p′) only if they have
different labels, and the score will be large if they have similar intensities and
short distance. Similar to [12], we first plug in Eqs. (2), (3) and (5) to energy
function Eq. (4), then convert it to the sum of unary potentials and pairwise
potentials, and finally minimize it via graph cuts [1] to obtain the foreground
mask Lq.

Note that the overall similarity score ω is utilized to adjust the weights of
the prior-related energy terms in Eq. (4). As a result, if there are similar masses
in the training set, our segmentation method will rely on the priors. Otherwise,
ω will be very small and Eq. (4) automatically degenerates to traditional graph
cuts-based segmentation, which prevents ineffective priors from reducing the
segmentation accuracy.

3 Experiments

In this section, we first describe our dataset, then evaluate the performance of
mass retrieval and mass segmentation using our approach.

Dataset: Our dataset builds on the digital database for screening mammog-
raphy (DDSM) [3], which is currently the largest public mammogram data-
base. DDSM is comprised of 2,604 cases, and every case consists of four views,
i.e., LEFT-CC, LEFT-MLO, RIGHT-CC and RIGHT-MLO. The masses have
diverse shapes, margins, sizes, breast densities as well as patients’ ages. They
also have radiologist-labeled boundaries and diagnosed pathologies. To build our
dataset, 2,340 image regions centered at masses are extracted. Our approach and
the comparison methods are tested five times. During each time, 100 images are
randomly selected to form the query set Q, and the remaining 2,240 images form
the training set D. Q and D are selected from different cases in order to avoid
positive bias. Below we report the average of the evaluation results during five
tests.
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Fig. 3. Our segmentation results on four masses, which are represented by red lines.
The blue lines denote radiologist-labeled mass boundaries. The left two masses are
malignant (cancer), and the right two masses are benign.

Evaluation of Mass Retrieval: The evaluation metric adopted here is retrieval
precision. In our context, precision is defined as the percentage of retrieved train-
ing masses that have the same shape category as that of the query mass. All
the shape attributes are divided as two categories. The first category includes
“irregular”, “lobulated”, “architectural distortion”, and their combinations. The
second category includes “round” and “oval”. We compare our method with
a state-of-the-art mass retrieval approach [4], which indexes quantized SIFT
features with a vocabulary tree. The precision scores of both methods change
slightly as the size of retrieval set k increases from 1 to 30, and our method
systematically outperforms the comparison method. For instance, at k = 20,
the precision scores of our method and the vocabulary tree-based method are
0.85 ± 0.11 and 0.81 ± 0.14, respectively. Our precise mass retrieval method lays
the foundation for learning accurate priors and improving mass segmentation
performance.

Evaluation of Mass Segmentation: Segmentation accuracy is assessed by
area overlap measure (AOM) and average minimum distance (DIST), which are
two widely used evaluation metrics in medical image segmentation. Our method
is tested with three settings, i.e., employing shape prior, appearance prior, and
both priors. The three configurations are hereafter denoted as “Ours-Shape”,
“Ours-App”, and “Ours-Both”. For all the configurations, we set k to the same
value in mass retrieval experiments, i.e. k = 20. λ1, λ2 and λ3 are tuned through
cross validation.

Three classical and state-of-the-art mass segmentation approaches are imple-
mented for comparison, which are based on active contour (AC) [8], convolution
neural network (CNN) [5], and traditional graph cuts (GC) [9], respectively. The
key parameters of these methods are tuned using cross validation. The evalua-
tion results are summarized in Table 1. A few segmentation results obtained by
Ours-Both are provided in Fig. 3 for qualitative evaluation.

The above results lead to several conclusions. First, our approach could find
visually similar training masses for most query masses and calculate effective
shape and appearance priors. Therefore, Ours-Shape and Ours-App substantially
surpass GC. Second, as noted earlier, the two priors are complementary: shape
prior recognizes mass centers, whereas appearance prior is vital to keep the
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Table 1. AOM and DIST (unit is mm) scores of the evaluated methods

AC [8] CNN [5] GC [9] Ours-Shape Ours-App Ours-Both

AOM 0.78 ± 0.12 0.73 ± 0.17 0.75 ± 0.14 0.81 ± 0.13 0.80 ± 0.10 0.84 ± 0.09

DIST 1.09 ± 0.43 1.36 ± 0.62 1.24 ± 0.54 0.97 ± 0.49 1.01 ± 0.45 0.88 ± 0.47

local details of mass boundaries. Thus, by integrating both priors, Ours-Both
further improves the segmentation accuracy. Third, detailed results show that
for some “uncommon” query masses, which have few similar training masses, the
overall similarity score ω is very small and the segmentation results of Ours-Both
are similar to those of GC. That is, the adaptive weights of priors successfully
prevent ineffective priors from backfiring. Finally, Ours-Both outperforms all the
comparison methods especially for masses with irregular and spiculated shapes.
Its segmentation results have a close agreement with radiologist-labeled mass
boundaries, and are highly consistent with mass pathologies.

4 Conclusion

In this paper, we leverage image retrieval method to learn query specific shape
and appearance priors for mammographic mass segmentation. Given a query
mass, similar training masses are found via Hough voting of SIFT features, and
priors are learned from these masses. The query mass is segmented through graph
cuts with priors, where the weights of priors are automatically adjusted according
to the overall similarity between query mass and its retrieved training masses.
Extensive experiments on DDSM demonstrate that our online learned priors
considerably improve the segmentation accuracy, and our approach outperforms
several widely used mass segmentation methods or systems. Future endeavors
will be devoted to distinguishing between benign and malignant masses using
features derived from mass boundaries.

References

1. Boykov, Y.Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

2. D’Orsi, C.J., Sickles, E.A., Mendelson, E.B., et al.: ACR BI-RADS Atlas, Breast
Imaging Reporting and Data System, 5th edn. American College of Radiology,
Reston (2013)

3. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital
database for screening mammography. In: Proceeding IWDM, pp. 212–218 (2000)

4. Jiang, M., Zhang, S., Li, H., Metaxas, D.N.: Computer-aided diagnosis of mammo-
graphic masses using scalable image retrieval. IEEE Trans. Biomed. Eng. 62(2),
783–792 (2015)

5. Lo, S.B., Li, H., Wang, Y.J., Kinnard, L., Freedman, M.T.: A multiple circular
paths convolution neural network system for detection of mammographic masses.
IEEE Trans. Med. Imaging 21(2), 150–158 (2002)



Mammographic Mass Segmentation with Online Learned Priors 43

6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)
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